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Abstract. A set of constraints for a pseudoclassical particle is given, which after quantisa- 
tion reproduces the wave equation associated with the Stuckelberg Lagrangian. By 
path-integral quantisation the covariant propagators of the photon in QED are recovered. 

In a previous paper (Barducci and Lusanna 1982) we gave a description of a massless 
particle belonging to the D(l ,O)OD(O, 1) representation of SL(2, C) by means of 
pseudoclassical mechanics. Two complex Grassmann four-vectors e”, e*” were intro- 
duced to describe the helicity degrees of freedom and a suitable set of first-class 
constraints was introduced to describe the photon. By canonical quantisation with 
the Gupta-Bleuler prescription we obtained the one-photon wavefunctions in the 
Lorentz gauge, whereas by path-integral quantisation the non-covariant transverse 
propagator was found. The breaking of manifest covariance is due to the presence 
of the light-like transverse polarisation vectors. 

In this paper we propose a different set of first-class constraints, which, after 
canonical quantisation, reproduce the Proca-like wave equation (Itzykson and Zuber 
1980) 

(1) (U + c L 2 ) ~ p ( ~ )  - (1 - A  ) a ” a ~ ” ( ~ )  = o 

y = - L  4 ~ f i , , ~ f i ’ Y  + $ p 2 ~ , ~ w  -;A (a,A*)*. 

which results from the Stuckelberg Lagrangian (Stuckelberg 1938) 

(2) 

This Lagrangian for # O  and A -0  gives the Proca theory for massive vector 
fields, while for A # 0, p + 0 it is used for the quantisation of the electromagnetic field 
in the covariant gauge (Itzykson and Zuber 1980, Feldman and Matthews 1962). 

Let us introduce the two constraints 

x = P ~ - ~ ~ + ( I - A ) P .  e * P .  e =o, = e* - e =o,  (3) 
where P’ is the canonical momentum of the particle with position x ” ,  p its mass and 
O w ,  e*” are Grassmann four-vectors. These variables satisfy the Poisson brackets 
(Barducci and Lusanna 1982) 

{x ”, P’} = -7 ””, 
{e”, e * ” }  = iq””, 

t7 = (+, - 9  - 9  -), 

and the two constraints turn out to be first class. 
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The Dirac Hamiltonian is 

HD = a ( T  1 x + P (7 )4 
where a ( T ) ,  p (7) are the arbitrary Lagrange multipliers. 

The Hamiltonian equations associated with HD are 

i = { x ” ,  H,,} = -2a +;(I - A  )(e*”@’ + e * ” e ’ ) ] ~ , ,  
(6) 

P” =0, e” =iG””(P, T)&,  e*” = -iG””(P, T ) e ? ,  

where G””(P, T )  = P ( T ) T ” ”  + a ( ~ ) ( l  -A)P”P”. The last two equations have the follow- 
ing solution which will be needed later: 

where 0: and e?” are the boundary conditions. 
The constraints (3) could have been deduced from the Lagrangian 

with a ( ~ ) ,  P ( T )  interpreted as einbeins (Barducci and Lusanna 1982). For p # 0, a 
can be evaluated from (3) and (6), and (8) becomes 

However, we cannot solve equations (6) for P,  since it is multiplied by an odd factor. 
The canonical quantisation is done by sending the Poisson brackets ( 4 )  into the 

commutation (antocommutation) relations (e” + b”, e*” + 6’”) 

The quantisation of both the constraints (3) presents ordering problems. For 
instance, if e*’eY+ab+L1 b ” +pb”b’” w: have 4 + ( a - @ ) b f . b - 4 P  and x-, 
[ 1 - p ( 1 - A ) ~ 2 - ~ 2 + ( 1 - A ) ( ~ - p ) B .  b’P.6. Since, as shown in equations (18)- 
(19), the known result for the propagator is obtained with 4 + d  = b’ b + 1 and 
x + = j 2  -b2  + (1 -A)$  6’ P b we assume this form of the quantum constraints. 
It must be noted that there is no choice of a and /3 which reproduces this form: if 
4 + 6’ b + 1 the coefficient of e’ cannot be one. Indeed, as shown in equation (20), 
the classical action associated with these quantum constraints is S,, --jZ: dT P ( T ) ,  with 
S,=, given by (21). This would imply the use of the classical constraint 4’ = 8* 8 + 1 = 0. 
But this constraint is inconsistent because 0 = (e* * 6)’ + 1. Therefore the path-integral 
quantisation of the previous classical model must be implemented with a measure 
modified to take into account the term - I = : ~ T ~ ( T )  as in (20), if we assume as a 
normally ordered quantum Hamiltonian gD = a2 +@$. This is an example of a pure 
quantum effect which has no classical counterpart. Indeed, reintroducing the right 
dimensions we would have 4’  = t9* 8 + h = 0 as [e] =[A]. As h has no classical 
limit, we obtain the classical constraint 4 = 8* e = 0. 
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With the chosen quantum Dirac Hamiltonian f i D ,  the Schrodinger equation is 

i(a/aT)l4) = fiDI4).  (11) 

As in Barducci and Lusanna (1982), we restrict ourselves to the gauges ci = /i = 0, a: < 
0, in which the solution of (1 1) is 

(12) 

By defining & = (YT, p’ = PT, we get a two-times formalism due to the arbitrariness of 
the constraints a: and p. The physical states are then selected as the generalised 
solutions (12) which satisfy 

14, (YT, P T )  = exp[-i(a:$ + P~)TII$ ,  0 , ~ .  

[ f i z - p 2 + ( 1 - A ) P * b + P  -b] l$)p~=O,  (6’ ’ b + 1)IG)pH = 0. (13) 

They turn out to be (Barducci and Lusanna 1982) 

The spinorial part of these states belongs to the subspace b”/O) of the 16-dimensional 
Hilbert space IO), b’”10), b”b’”10). . .due  to d “0,  which selects the states with 
occupation number one. If IP) are the eigenstates of the four-momentum operator 
p”,  and if we define the following transverse and longitudinal states for P2 # 0 

/ /A)== (7”” -P”P”/Pz)b:lo), I F ) L =  (Pwf’”/P2M:Io), (15) 

then the physical states solutions of the first of equations (13) are 

IP; P2 = @ * / A  )@ IF )L, IP; P2 = F 2 )  @I/A)T. (16) 
A general physical state will be 

In the four-momentum representation, the physical kernel between states annihilated 
by (b’ 0 b + 1) is (Schwinger 1951) 

+W 

RPH(p’, P) = s4(p’ -P) doi exp{-ioi[P2 - F 2  + (1 - A  )P b + ~  b + is]} 

- is4(p’ - P) - 
P 2 - ~ ’ +  (1 -A)P b+P  b +ie * 

Its matrix elements between states (OleA b and sB bCIO), where s 2  form an arbitrary 
set of real time-like polarisation vectors, E ~ ~ , , , E L  = TAB, are 

wPH)AB = -E %-E i (KPH),~ = --E SE ;(oIb,RPHb: IO>,  

as expected from (1). 
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To recover this result by means of the path integral, we follow the same steps as 
in Barducci and Lusanna (1982), starting from the evolution operator U(Tf, ~ i )  = 
exp[&~(Tf-Ti)], Tf > Ti. AS there, the physical kernel turns out to be 

Here 

cu‘ = a (Tf -Ti), 

9 ( 0 ,  e* )  = lim n d4Bk d48c 

6 = p (71 - Ti), d p  = -exp(e*. e) d48 d4e*, 
N 

N - a ,  k = l  

(pl.. . pnlef>, ( 6 T I v 1 . .  . v“), are the transition functions from the occupation number 
basis to the Grassmann coherent states and SCI is the phase-space action 

(21) 

Let us note in (20) the term e-’’ which is the previously discussed modification of the 
measure. 

The integration over the Grassmann variables is Gaussian and is done by the shift 
to the classical solutions given by (17), with the result 

a13 

x Xf’Tf 9( x, A) exp{ -e& (exp( i d7 a (1 - A)PP)) ei13 e’’ 
X1J1 2 m  

Tt 

-i dT[P e x  + a ( P 2 - p 2 ) ] ] .  

The remaining normalisation constant N(Tf - T ~ )  after the shift to the classical solution 
turns out to be 1, by evaluating it with the lattice definition (Faddeev 1976) correspond- 
ing to a normal ordering. This path integral is not Gaussian, but actually we do not 
need its full expression as we are to project in 6. In (20) the integration over 6 can 
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be done and a non-zero result is obtained only for n = 1. It is 

As after (18), instead of between the states 1p) = 6: 10) it is convenient to evaluate 
the kernel between the states IA) = 6’10). The transition functions are (Alef) = 
E A  8f, (0: IA) = 87 * Therefore after the integration over dpf dFi  we get 

Here we have used the identity 

The integrals over P ( T )  and X ( T )  are Gaussian and their evaluation gives the result 
- 0  

x exp[(i/4&)(xf-xi),(TA~)~”(xf -xJv +i&p2] (26) 

TyB = q ” ” - ~ ( l  - A ) ( E ~ E L + E L E L ) = T L % .  (27) 

where TiL is the inverse of the matrix 

Let us note that in the standard basis E :  = (1,0,0,0) . . . E ?  = (0, 0, 0, l ) ,  det TAA # 0 
for A # 0, while det TAB # 0 (A # B )  for A # 1,3.  Equation (26) must be evaluated at 
a non-singular value of A .  As the final result contains only diagonal terms, the only 
singular value for A is A =0, just the value for which there is no Green function 
associated with (1) for p + 0. 

By taking the Fourier transform, we get 

= S4(P’-P) d& exp{-iG[PZ-p2- (1 -A)P * P * + i ~ ] }  

= c ~ ~ ( P ’ - P ) ( I  d&exp{- i&[(P2-p2)~- ( l -A)P.EP * E + ~ E ] } )  

1-1 
0 

-m AB 

(28) 
where in the last step, by using (25) and q = ( q A B ) ,  we rewrote KpH as a 4 x 4 matrix. 
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We then get 

and we recover (19) with just the same calculations as starting from (18). 
Therefore we have succeeded in getting a pseudoclassical description of the photon 

also in the covariant gauges and not only the non-manifestly covariant one in the 
Lorentz gauge given previously (Barducci and Lusanna 1982). As a by-product we 
get the pseudoclassical description of a massive spin-1 particle for A = 1, p 2  # 0. 

References 

Barducci A and Lusanna L 1982 The photon in pseudoclassical mechanics, University of Geneva preprint 
Faddeev L D 1976 Les Houches, Merhods in Field Theory (Amsterdam: North-Holland) 
Feldman G and Matthews P T 1962 Massive Electrodynamics, ICTP-61-17 preprint (unpublished) 
Itzykson C and Zuber J B 1980 Quantum Field Theory (New York: McGraw-Hill) 
Schwinger J 1951 Phys. Rev. 82 664 
Stuckelberg E C G 1938 Helv. Phys. Acta 11 225, 229 


